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ABSTRACT

Free-piston Stirling engine (FPSE) and
linear alternator (LA) technology is combined
with radioisotope heat sources to produce a
compact dynamic isotope power system (DIPS)
suitable for,multihundred-watt space applica-
tions which appears competitive with advanced
radioisotope thermoelectric generators (RTGs).

_, Unlike earlier DIPS concepts based on
LU closed cycle Brayton conversion, the small

Stirling DIPS is scaleable to multihundred-watt
power levels or lower. The FPSE/LA convertor,
which is not subject to the tip clearance to
swept area scaling limitation of turbomachinery,
remains a high efficiency convertor in sizes
ranging from tens of kilowatts down to only a
few watts. At multihundred-watt unit size, the

FPSE can be directly integrated with the
government-furnished General Purpose Heat
Source (GPHS) via radiative coupling; the
resulting dynamic isotope power system has a
size and weight that compares favorably with
the advanced modular (Mod) RTG, but requires
less than a third the amount of isotope fuel.
Thus the FPSE extends the high efficiency
advantage of dynamic systems into a power
range never previously considered competitive
for DIPS. This results in lower fuel cost and

reduced radiological hazard per delivered
electrical watt.

Having sucessfully flown on several earlier

space missions, free-piston Stirling technology

*Numbers in parentheses designate refer-
ences at end of paper.

has the potential to achieve, as an isotope
engine, the high reliability that is required for
years of unattended remote operation. Hermeti-

cally sealed inside a container, there are typi-
cally only two moving parts and no sliding seals
of any kind. Incorporating noncontacting gas
bearings or flexures, there is no wear between

the moving parts. Terrestrially, Stirling engine
convertors have demonstrated virtually unlimited
service life--in test, one radioisotope heated
unit has achieved over 110 000 hr continuous

operation.
On Mars the small Stirling DIPS offers the

benefit of being able to operate exposed to the
atmosphere without degradation. RTG's must
be hermetically sealed inside a container to
survive.

For these reasons the small Stirling DIPS
appears an economical alternative to RTG's.
When it is developed, it should prove to be a
strong candidate to power the many
multihundred-watt robotic missions anticipated
within the next three decades for deep space
and planet surface exploration.

INTRODUCTION

Nuclear power sources will be needed for
many of the civil space missions anticipated
within the next two or three decades. These

include all the deep space and outer planet
missions presently in the OSSA strategic plan
or proposed by the solar system exploration

and space physics subcommittees (1)*, and
many robotic planetary surface missions
considered as precursors to later human



exploration. These particular missions
(summarized in Table 1) require multihundred-
watt power sources. Although there is an
eventual requirement for multikilo-watt nuclear
power sources to support manned missions
(construction and operation of a lunar base, for

example) these manned missions probably will
not take place until most of the unmanned
missions have been completed. The dates
listed for these missions are only estimates;
most of them will not take place for ten years or
more. From the known characterizations of

these missions and the capabilities of the
vehicles and spacecraft involved, none will
require more than 700 W. All are remote
missions, in locations ranging from the lunar
surface to deep space. High performance and
minimum weight are desirable, but the key
requirement is for reliable operation in a harsh
environment, without intervention, over extended
periods of time.

RTGS

The only power source presently available
to meet these requirements is the radioisotope
thermoelectric generator (RTG) developed for
NASA by the Department of Energy (DOE).
The RTG is built around the space-qualified
General Purpose Heat Source (GPHS), which is
also furnished by DoE. Basically an array of

radiatively coupled thermoelectric (TE) cells
enclosing a stack of GPHS blocks as shown in

Fig. 1, this power source is the result of years
of evolutionary development and flight experi-
ence. The GPHS RTGs powering the Galileo
and Ulysses missions draw their design heri-
tage and 1300 K Si Ge unicouple technology
from their predecessors, the MHW RTGs used
on Pioneer and Voyager. These units are still

operating after being launched more than a
decade ago. Scheduled for service on the
Cassini and CRAF missions, GPHS RTG will be

superceded for the later missions (Solar Probe,
Pluto flyby, Comet Nucleus Sample Return etc.)
by Mod RTG (2), which is the next generation

in the evolutionary chain. This unit employs the
new 1300 K Si/Ge/GaP multicouple, which
produces higher output voltage and allows
modularity and improved packaging.

The RTG has demonstrated reliability well-
suited for these missions. Its thermoelectric

conversion system, which has no moving parts
• to break or wear out, is made up of multiple
series-parallel strings of redundant elements
which accommodate failure of any element in
the string with only partial degradation. No
open circuit failures have ever been recorded;
counting all the RTG powered missions flown to
date, over 70 years of successful flight experi-
ence have been accumulated. For the con-

verter, it translates to 442 million unicouple
operating hours, demonstrating a reliablity in
service "measured in decades" (3).

For missions where life and reliability are
needed most, the RTG has proven to be a long
lived and most reliable power source. But there
is a high price to be paid. Since its thermo-
electric conversion is not very efficient (typically
6 to 7 percent), an RTG needs a substantial
amount of heat source in order to produce a
few electrical watts. For example, a GPHS

RTG producing 285 electrical watts at beginning
of life (BOL) requires over 4.4 thermal kilowatts

heat source. To the power system, this input
must ultimately be disposed of as waste heat.
Waste heat is a burden on the user since it

must be continuously removed, placing a sub-
stantial auxilary cooling requirement on the
spacecraft during launch and transit.

The heat source is expensive. The low
emission spectrum and long half-life plutonium
isotope used in GPHS costs roughly $1200 a
gram from the producer (4). Each GPHS is

loaded with 448 g of active material. Counting
the costs of production, encapsulation and
assembly into heat source modules, the
resulting mission user cost is about $6000 per
thermal watt. For an RTG, this translates to
roughly $100 000 per electrical watt.

The radioisotope inventory carried by
RTGs (~460 C: per electrical watt) translates to
significant safety concerns since the amount of
isotope launched aboard a spacecraft deter-
mines the "source term" generated in the event
of an accident (5, 6). To a first approximation,
the numerically calculated risk versus on-board

inventory is a linear relationship (i.e., the more
isotope carried, the greater the risk). These
risks have been considered acceptable for the



radioisotopepoweredmissionscarried out to
date but the desire to reduce or eliminate that

risk has been widely recognized (7).

DYNAMIC ISOTOPE POWER SYSTEMS

Where no alternatives to isotope sources
are available there is a strong incentive to at
least reduce the amount of isotope that is
required. This can be accomplished by devel-
oping a power source with more efficient con-
version. At present, the most efficient convert-
ers of thermal energy are dynamic heat en-
gines. When energized by an isotope heat
source, the resulting power plant is known as a
dynamic isotope power system, or DIPS. DIPS
require less isotope per delivered electrical watt
because heat engines are 3 to 5 times more
efficient than thermoelectric convertors. On the

other hand, they introduce the complication of
moving parts.

Because they have the potential to signifi-
cantly reduc_e the isotope inventory required for
power generation, DIPS have been studied
extensively for the last 25 years, and are still
under consideration.

Technology programs to date have been
confined to design studies and component
development. During the course of earlier
programs in the 1960s and early 70's, three
prototype convertor loops based on turbo-
machinery were built and tested. These were
carried to test cell demonstrations but no further

because the multikilo-watt missions they were
intended for never materialized.

Primary focus for convertor development
has been the closed Brayton cycle. It is
mechanically the most simple; the turbine,
alternator and compressor assemblies can be
integrated to just one rotating part which,
supported on the hydrodynamic gas bearings
developed in that program, does not touch
anything while spinning. Considered to have
high potential reliability for space power,
turbomachinery demonstrates significant
advantages of scaling to multi-kilowatt power
levels and above, but because of the fixed

losses associated with bearings and turbine tip
clearances, turbomachinery does not scale very
well to lower power levels (8). Generally
speaking, turbomachine unit sizes below 500 W

are considered impractical because of the

fixed loss effect on overall convertor efficiency
(Fig. 2).

The smallest Brayton convertor ever
developed for space was the "mini-BRU" BIPS

(Brayton Isotope Power System) unit built in the
late 70's under NASA and DoE sponsorship at
the Garrett AirResearch Co. (9). It featured a
minature turboalternator compressor which was
designed as a nominally 1.3 kWe unit, but could

cover the range 0.5 to 2.1 kWe by being
combined with variously sized heat source,
recuperator and radiator units (Fig. 3).

Hardware developed and tested during this
program included the mini-BRU, a heat source
assembly (containing the same MHW isotope

heat source used to energize the Voyager RTG)
and its heat exchangers, a recuperator
assembly, waste heat exchangers, and multifoil

insulation. This hardware was later integrated
into a complete "workhorse" convertor loop and

tested in vacuum using simulated (electrically
heated) MHW heat sources. A convertor
efficiency of 24.5 percent was measured.

Recent design studies based on this

technology include the (1 to 10 kWe) DIPS
TECS for the military Boost Surveillance and
Tracking (BSTS) satellite (10,11), and a scaled-
down version of this system, the Low Power

DIPS (12) which has also been proposed as a
replacement for RTG units on interplanetary
missions (0.25 to 1.5 kWe). Comparisons
made by the developer showed that DIPS
TECS would be heavier than Mod RTGs if the

power requirement for BSTS was below 2 kWe.
Similar comparisons for Low Power DIPS, a

direct multihundred-watt application in this
instance, indicated a heavier system than Mod
RTG below 1 kWe, and heavier than the
present GPHS RTG's at power levels below

650 We (Fig. 4). Although the isotope savings
was better than 60 percent in all cases, the
weight disadvantage was substantial. The

implication is that a power requirement of only a
few hundred watts, together with the necessity
of employing multiple redundant convertor units

to ensure overall system reliability, will render a
turbomachinery based DIPS to be significantly
larger and heavier than an equivalent ensemble
of RTG units.
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SMALL STIRLING DIPS

To produce a DIPS that is competitive
with RTGs for multihundred-watt missions, the

Stifling engine may be a better convertor
choice. Combining isotope heat sources with
Stirling engines is not a new idea. The DoE
sponsored SIPS program of the 1970's (13)
produced a 1 kWe unit, based on a kinematic

engine driving a three phase alternator, which
was carried to prototype performance testing.
With a design requirement for 6 month service
intervals, however, it was not a power source
for long term remote missions. The more
recently developed free-piston Stirling engine
(FPSE) combined with a linear alternator (LA)
shows more promise. Having been reduced to
only those moving parts which are absolutely
necessary to effect the Stirling cycle and
generate electricity, this convertor (Fig. 5) not
only retains the high thermal efficiency of its
kinematic predecessor, but adds the potential
for greatly _xtended life. With typically only two
moving parts, it is mechanically simple. It can
be hermetically sealed, with no oils or other
organic materials inside to degrade or contam-
inate. Like the Brayton, the moving parts can
be lubricated by the gas working fluid. No
sliding or rotating seals of any kind are used;
the moving parts are essentially not in contact.
Since its vibrations are basically monochromatic
(reciprocating parts 60 to 100 Hz) they are
relatively easy to attenuate or tune out.

Operated in reverse as a refrigerator, this

machine has already seen use in space for
reconnaissance and earth resources monitoring
missions, providing cryogenic cooling for infra-
red imaging sensors (14).

Currently it is being developed for space
power under the Civil Space Technology

Initiative High Capacity Power program, by
NASA as a multi-kWe convertor for nuclear

reactor heat sources (15). The primary
applications are stationary power plants for a
lunar base, and nuclear electric propulsion for
manned Mars missions. Goals of the program
are to demonstrate a compact, high power
density (7 kg/kWe) convertor with maximum
efficiency at temperature ratios applicable to
space power, and continuous service life
exceeding 60 000 hr. During the course of this

development program, thermal-to-electric
conversion efficiencies better than 20 percent
have already been demonstrated at temperature
ratios as low as 2.2. This convertor represents
a significant scale-up from the technology
heritage of earlier machines which were 3 kWe
or less.

The FPSE differs from turbomachines in

that it can be advantageously sealed into the
multihundred-watt range of unit size and below.
Published performance data from various units

previously built and tested (16 to 21), plotted in
Fig. 6, demonstrate consistent performance
over a range of unit power output (5 W to
12.5 kW) roughly four orders of magnitude.
Data published by the CSTI engine contractor
(22) indicates that a multihundred-watt FPSE/LA
power module with conversion efficiencies of 25

to 35 percent should have a specific weight
within the range 12 to 15 kg/kWe at
temperature ratios associated with dynamic
isotope systems (2.2 and above). This
supports the proposition that a multihundred-
watt power module could produce a small
Stirling DIPS that is competitive. Since the
CSTI space power convertor was essentially an
extension of the technology base from smaller
FPSE units it is believed that a multihundred-

watt space power unit could be brought to
development rather rapidly, possibly within five
years.

The key to small Stifling DIPS is thermal
integration of the FPSE heater head with
GPHS, the only space qualified heat source

presently available. Approximately 250 thermal
watts each, these modules are designed for
radiative coupling to the conversion system.

For a multikilo-watt DIPS, radiative coupling
complicates thermal integration because there

must be an insulated container (heat source
assembly) which is separate from the convertor
in order to hold the large number of GPHS
modules, and a high temperature intermediate
loop to collect and concentrate the heat. On

the other hand, thermal integration of a
multihundred-watt FPSE is relatively
straightforward. The multihundred-watt FPSE

needs a heat source consisting of only a few
GPHS blocks. By clustering the blocks around
the heater head as shown in Fig. 7, the FPSE
heater head can be heated directly by radiative
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coupling. This eliminates the need for a
separate insulated container and intermediate
heat transfer loops. The blocks and heater
head are enclosed within an integrated heat
source/heater head assembly. Since every
GPHS block must have an unobstructed view of

the heater head, 750 We is about the largest
unit that can be integrated in this fashion.
Within this power range, however, direct
integration significantly reduces size and weight.

A recent comparison of small Brayton and
Stirling DIPS (major components, but without

power conditioning or integration hardware) for
distributed planet surface applications (23),
illustrates the improvement in specific power
that can be achieved when intermediate heat

exchange and transport (insulated ducts, heat
pipes, pumped loops) components are no
longer needed (Fig. 8). In this comparison, the
Brayton characterizations model the Rocketdyne
DIPS-TECS GPHS heat souce assembly
coupled to a single converter unit

(turbomachrnery, ducting and heat exchangers)
optimized according to the Closed Cycle Engine
Performance (CCEP) Code developed at NASA
Lewis Research Center (24). Stirling
characterizations, which were based on the
CSTI convertor and small power module
designs developed at NASA Lewis and the

CSTI engine contractor, model a small free-

piston Stirling engine (20 kg/kWe) directly
integrated with the GPHS heat source. Both

systems assume a lightweight double-sided
radiator. At 250 We, the weight savings of

direct integration combined with Stirling's better
performance yields almost double the specific

power relative to the Brayton DIPS. Required
radiator area is cut in half.

Recent design studies carried out at
NASA Lewis and the University of Florida have

established the feasibility and limits of direct
integration through radiative coupling, and
indicated the physical characteristics and

performance that might be achievable by a
small Stirling DIPS (25). A dual engine
configuration (Fig. 9) was investigated. In these
studies, various configurations of GPHS and

insulation packages surrounding an opposed
pair of FPSE heater heads were considered,
depending on the output power level desired.
Thermal modeling was performed to analyze

the GPHS heat source and its integration into
various (heat source/heater head) geometries
using the analysis codes TRAYSYS and SlNDA
(26). GPHS thermal models were correlated

with data supplied by General Electric's Astro-

Space Division and DOE Mound Labs (two
developers of GPHS). Heater head data was

supplied by the NASA Lewis Stirling technology
branch. The analysis confirmed feasibility of
direct integration. For a heater head
temperature of 1050 K, the GPHS fuel clad

could be maintained within safe operating limits
under a variety of conditions including shutdown
of one engine.

From the heat source/heater head geom-
etries studied, a preliminary small Stirling

dynamic isotope power system configuration
emerged. Characterization of this concept,

which included the heat source assembly,
insulation package, convertor and downstream
components, indicated that a multihundred-watt

Stirling DIPS should have dimensions similar to

the Mod RTG and exhibit a specific power of 7
to 10 We/kG.

Results of the characterization are shown

(240 and 480 We), with comparisons to GPHS
RTGs and Mod RTGs, in Table 2. Since its

size and weight appears competitive with Mod

RTG for the power range, the greatly reduced
fuel requirement of the small Stirling DIPS
appears to extend the competitive range for
dynamic conversion to power levels not previ-
ously considered.

There is also an incentive to consider this
power source for Mars surface missions.

Although Mars Rover studies generally assume
that RTG's will be used to power the rover
vehicle, neither the GPHS RTG nor its Mod

RTG sucessor are capable of operating in that
atmosphere. Both are designed to take
advantage of the space environment in order to
reduce weight to a minimum. Their internal

cavities are vented to space, which provides
vacuum for multifoil insulation and removes

isotope decay products and outgas from the TE
converter elements as they sublime at 1300 K.

The space vacuum maintains integrity of the TE
elements. At full operating temperature, the

presence of minute quantities of oxygen or CO 2
would rapidly oxidize them. Since this vacuum
is not available on Mars, modification of a
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space RTG for the rover mission will increase
its mass. The SNAP 19a RTG powering the

Viking landers (27) used a hermetically sealed
container and cover gas, flooding the container

cavity with mixture of argon and helium at
1 atm (the convertor was sealed against a hot
junction temp of 820 K). Solid insulation was
used to reduce heat loss. As a strategy to
avoid degradation it proved successful, but the
generator was heavy. Specific power was
2.3 W/kg. Modifying a space RTG for Mars will
also entail increased risk. Schock (28) has

proposed modifying the MOd RTG by
hermetically vacuum sealing the annular
convertor cavity containing the multifoil
insulation and TE elements, and enclosing the
GPHS stack in a separately sealed container

that is placed inside the annulus but allowed to
communicate to the outside via a selective vent.

Although on paper this design maintains the low
weight of the space unit, it depends on the
ability of its. hermetic seal to maintain less than
10 to 3 torr at 1300 K, without external

pumping, for 7 to 10 years. This creates a
single point failure that negates the redundancy
advantage enjoyed by TE's in the space unit.

The FPSE, on the other hand, will be
insensitive to the Martian atmosphere because
it is hermetically sealed and the superalloys

typically used are stable in CO 2 at operating
temperature. The GPHS module in this case
can vent directly to the outside since the local

CO 2 concentration is less than what the module
normally gives off during the post-encapsulation
reduction process (29).

This evidence may be sufficient to put the
small Stirling DIPS into consideration for the
missions listed in Table 1. Consideration for

missions is only a first step, however. To gain
acceptance, small Stirling DIPS will have to
demonstrate high reliability and long life. Spe-
cifically, the challenge will be to demonstrate a
high power density Stirling engine with 20 year
life, and reliability in service on the order of
0.99. For any system with moving parts this is
a major challenge, since it will inevitably be
compared to RTG thermoelectric convertors
which have accumulated years of flight experi-
ence. A convincing demonstration of reliability
and life will be needed. The missions, which

may last ten years or more, are for scientific
purposes not technology demonstration.

There is some evidence that the FPSE

may be capable of meeting this challenge.
Early in the NASA CSTI program, endurance
testing was carried out on the MTI Engineering
Model engine (30), a 3 kWe developmental
convertor equipped with gas bearings which
were pressurized by an external supply. The
original goal was to demonstrate 10 000 hr
endurance, but only 5500 hr operation were
accumulated before funding limitations curtailed
the program. Despite numerous test cell
ancillary failures (such as starting the engine
before the bearing supply was turned on) this
engine always started and ran without incident.
Teardown of the engine afterwards revealed
that no measureable wear had occurred; only
minor scratches were observed which were

attributed to the dry starts.
More convincing evidence of reliability has

been achieved by the small sized units. In the
US, FPSE's have been developed for the
National Institute of Health as a power source
for the artificial heart, which has been under
development since 1967. Their design goal is a
fully implantable unit that will operate for
10 years without intervention. Major
components of the artificial heart engine have
accumulated over 14 years (10 exp 9 cycles) of
life testing. During the course of this program,
one prototype engine has acumulated 36 000 hr
continous operation without failure (31).

There is also evidence concerning reliabil-

ity and long life operating in harsh remote
environments. A series of Stirling engine
generator sets were developed by the British
Atomic Energy Agency (at Harwell) for remote
marine applications in the late 1960's and early
1970's as replacements for thermoelectric
generators in order to save fuel. These were
free-piston/linear alternator machines. A total of
seven units were built. Two were used to

power buoys in the North Sea. Together they
accumulated more than 31 000 hr of

service. The longest period of continuous
unattended operation was 21 months. Another
unit accumulated two consecutive one year
periods of continuous unattended operation

powering a lighthouse in Galway Bay, Ireland.
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These field test units were heated by propane.
Experience showed the machines to be reliable.
Failures that ocurred were due to burner

malfunction and not the convertor (32). The
developmental prototype, which was radioiso-
tope heated, remained in the laboratory and ran
continously for 13 years (33).

To develop a long life FPSE suitable for
space missions, the challenge is to perfect the
displacer and power piston bearings which

maintain clearances between the moving parts.
Convertor testing to date, which has focused on
performance, has seen prototype engines run
for hundreds of hours with no measureable

wear, but upon disassembly there has always
been some evidence of rubbing. Since life-
limiting wear mechanisms associated with
intermittent rubbing are hard to quantify it is
difficult to predict long term life without data
from long term tests. On the other hand, if
noncontacting bearing development can be
demonstrated such that evidence of rubbing no
longer appears, engine life can be more
positively predicted by temperature/stress/
fatigue considerations rather than tribological
considerations which are harder to extrapolate.
One approach that guarantees non contact is

the flexure bearing (a variant of the diaphragm)
which positively locates the moving part within
its clearance. Historically, use of flexures is
associated with short piston travel which limits
the engine power density achievable. Recent
developments in flexure technology, however,

have expanded those limits (allowing greater
axial movement while restricting radial motion),
permitting higher power densities to be
achieved. A secondary benefit from
implementing flexures in a high power density

engine is that starting friction could be greatly
reduced.

Reliability can only be established by test
data, and test data can only be obtained by
hardware experience. Before a small Stirling
can be flown it will have to be extensively
tested on the ground. This test program will
require a great deal of accelerated component
failure testing since the production quantities
needed to develop a statistical data base for

critical components are lacking, and the mis-
sions are longer in duration than the anticipated
technology development programs to support

them. Mission failures are not acceptable;
there will be no post mortem data from field

units available to identify and correct the hard-
ware failures. It will therefore be necessary to
anticipate failure modes, and develop detailed
understanding of each failure mechanism to the

extent that it can be quantitatively predicted,
and demonstrated by experiment during the
course of the development program. For the
Stirling technologist this will be a serious chal-

lenge, but the benefit is an isotope power

source that is greatly reduced in cost, enabling
more mission capability from the resources
available.

CONCLUSION

The most likely missions for radioisotope
power sources in the forseeable future are long
duration robotic missions. Power levels associ-
ated with these missions are multihundred-watt.

Although these missions can be reliably
powered by RTGs, the use of RTGs is costly
because they require large amounts of isotope
heat source which is hazardous, hard to obtain,

and expensive. Because a dynamic system
requires significantly less isotope to produce

power, it could reduce the costs and possibly
the risks to the mission. This dynamic system
must be small enough, light enough, and reli-
able enough to replace the RTG.

It is possible to build a multihundred-watt

DIPS by combining the GPHS heat sources

with free-piston Stirling convertor technology
currently being developed. A high power
density space engine, which can be scaled

down to multihundred-watt unit size, is directly
integrated with GPHS through radiative coupling
with the FPSE heater head. This avoids
intermediate heat transfer devices and

minimizes heat losses. Thermal analysis has
shown the concept to be feasible, and
preliminary system characterization shows it to
be attractive. On a per electrical watt basis it is

equivalent in size and weight to the Mod RTG,
but less than a third the heat source is

required.

If reliability and life of the small free-piston
Stirling convertor can be demonstrated, small
Stirling DIPS can provide a low cost alternative
to RTG's for these missions. Because this

7



technology appears to have the potential to
meet the mission requirements, and because
the potential cost savings is too attractive to
ignore, efforts are now underway to develop the
small Stirling DIPS, and bring the long-lived
multihundred-watt space engine to fruition.
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Table 1--Mi=ions That Will Require Radioisotope Power Sources

Mission

Craf

Cassini

Pluto flyby

Solar probe

Mars rover

sample return

Comet nudeus

sample return

Lunar site

survey rover

Propo=ed
launch date

1995

1996

1998

2O0O

2001

2OO2

2002,
2OO6, & 2010

Classification Mission EOM
duration, 3ower level

years W

Code S 7.5 461

strategic plan

Code S 10.5 480

strategic plan

Solar system 14 to 16 500 to 600
exploration

Code S 8 500

strategic plan

SEi precursor 4 500

Solarsystem
exploration

8 500 to 700

SEI precursor 5 500

Mission

Nepturn orbiter
and lenders

Multiple asteroid
orbiter grand
tour (w/Landers)

Mars site survey
rover

Jupiter grand
tour (Orbiter
and Landers)

Interstellar probe

Polar heliosphedc
probe

Proposed
launch date

2OO3

2005

2005,

2007, 2009
2015, &

2024

2006

circa 2010

post 2010

Classification

Solar system
exploration

Solar system
exploration

Mission EOM

duration, _ower level
years W

20 5O0 to 7O0

10 to 12 500 to 700

SEI precursor 5 400

Solar system
exploration

Space physics

Space physics

10to12 500 to 700

20 to 25 200 to 500

35 200 to 500

Table 2--
(a) 240 W system comparison

GPHS-RTG
MOD-RTG

Small SLiding DIPS

Power
source

mass,

k9
45.3
31.2
33.8

Power source envelope

Diameter, Length,
cm cm

42 110
38 70
27 100

Radiator

temperature

54O
598

375

Number of
GPHS blocks

required

18
12

4

(b)480 W system comparison

GPHS-RTG

MOD-RTG
Sin_allStiding DIPS

90.6
62.4
59.8

42

38
27

220

130

I 120
l 540

598
375

36
24

8

Isotope
fuel

required,

kQ
8.1

5.4

1.8

16.1

10.7
3.6
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Figure 1._General-purpose heat source - RTG.
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Figure 2.--DIPS efficiency characteristics;
1300 K turbine inlet temperature
systems. Bearing, windage, thermal,
electrical losses represent larger frac-
tion at lower power. Smaller diameters
decrease aerodynamic efficiencies at
low power. (From Ref. 8.)
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• Small free piston Stiding engine (FPSE)
• DOE General Purpose Heat Source (GPHS)

• Direct heat source/heater head integration
• Dual redundant PCU

• Not shown: waste heat transport, power
conditioning and controls
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